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Abstract

A model has been derived for interfacial wave propagation for a liquid film on the wall of a vertical pipe

and for a flowing gas in the central core. An analytical study is presented for the stability of a flat interface,

and for traveling waves on the interface. Long wave theory is applied to both phases and the resulting

conservation equations are of the same form as a two-fluid model. Two situations are examined: the

interface between a Taylor bubble and the liquid film, where the gas velocity is small, and the interface for

cocurrent annular flow where the gas velocity is relatively large. The interface between a Taylor bubble and
a liquid film was found to be dominated by waves, which can be destabilized by the inertia of the liquid

phase. For annular flow the interface is subject to a Kelvin–Helmholtz instability. When the gas flow rate is

small, and surface tension is negligible, the traveling wave has a shape similar to that of a Taylor bubble

except near the tip and trailing edge. When surface tension is dominant, the solution is a soliton. This

region and the receding part of the soliton appears to be related to the ripple waves seen near the trailing

edge of Taylor bubbles.
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1. Introduction

It is important to understand the mechanisms of wave propagation on the interface between a
liquid film on the wall of a conduit and the gas in a central core since many transient and steady-
state two-phase flow phenomena are controlled by the dynamics of the interface. Examples in-
clude interface waves in annular dispersed flow, flow transition mechanisms between slug flow and
annular flow, the interface between a Taylor bubble and the liquid film, the shape of Taylor
bubbles, the entrainment of droplets in annular flow, and so on. Wave propagation solutions can
also provide closure models for multi-dimensional, two-fluid, two-phase flow calculations, such as
for interfacial area density and interfacial force density.

Fukano et al. (1985) analyzed the disturbance waves on a liquid film induced by gas flow in a
horizontal rectangular duct. They showed that the region where disturbance waves are generated
corresponds to the region where dynamic waves dominate kinematic waves, and the region where
ripple waves are generated corresponds to the region where the kinematic waves dominate dy-
namic waves. However, they did not consider a wavy interface in a vertical channel.

Zabaras and Dukler (1986) measured the instantaneous local film thickness, wall shear stress,
and pressure gradient for upward cocurrent gas-liquid annular flow, but they did not perform a
thorough analysis of the dynamics of the wavy interface.

Dressler (1949) considered a roll wave in an inclined open channel. Discontinuous periodic
solutions were constructed by joining together sections of a continuous solution through conti-
nuity shocks (i.e., ‘‘bores’’). Neither gravity nor the effect of the gas phase was considered by
Dressler. The gas phase does not affect the interface characteristics very much for Taylor bubbles,
however, gravity may be important. Fukano et al. (1980) analyzed the shape of a Taylor bubble in
a vertical channel using coordinates moving with the Taylor bubble. However, the effect of gas
flow on the traveling wave was not included in this study.

Tilley et al. (1994) analyzed nonlinear long-waves in an inclined channel and derived a modified
Kuramoto–Sivashinsky equation, which can exhibit chaotic phenomena. This theory is based on
the work of Benney (1966), who applied long wave theory to a liquid film. However, the theory is
based on the lubrication approximation, and is applicable only for very small liquid flow velocities
in an inclined channel.

Void wave theory (Lahey, 1992) and flooding theory in annular two-phase flow (Fowler and
Lisseter, 1992) can be very useful in the analysis of a wavy interface because the basic equations of
the interface obtained using long wave theory are the same as the two-fluid model equations. Thus
the method which can be used to analyze the wavy interface is similar to that used for void waves
and flooding.

The wavy structure of an annular flow is important and many papers on this subject have been
published recently. For example, Zapke and Kroger (2000), Vlachos et al. (2001), Vijayan et al.
(2001, 2002), and Mouza et al. (2002) investigated flooding phenomena while Bugg et al. (1998),
Polonsky et al. (1999), and Van Hout et al. (2002) considered the velocity field around a Taylor
bubble. The interfacial shear stress and frictional pressure drop was investigated for annular flow
by Fukano and Furukawa (1998), Fore et al. (2000), and Hajiloo et al. (2001). Waves on a falling
liquid film were considered by Karimi and Kawaji (1999), Adomeit and Renz (2000), Takamasa
and Kobayshi (2000), and Amvrosini et al. (2002), however, they did not consider the stability
mechanisms of the wavy interface in detail.
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The analysis given herein presents a theoretical foundation for the effects of interfacial stability,
and considers the wave forms associated with traveling waves. In particular, the stability of a flat
interface, as well as traveling waves, is considered by applying long wave theory to both phases. If
the gas in the central core is assumed to have a relatively low velocity, the wavy interface between
a Taylor bubble and the liquid film, and the Taylor bubble shape, can be predicted. For annular
flow, the characteristics of the wavy interface and the application of long wave theory were
considered when the gas velocity was relatively high. It should be noted that the long wave
approximation which was used in this paper implies that the wave lengths are much larger than
the liquid film thickness. In analyzing the behaviors of the resultant equations, a ‘‘short wave’’
length approximation was also made which implies that the wave length is on the order of the pipe
diameter. These two approaches are fully consistent for the high void fractions annular flows that
have been analyzed herein.

In Chapter 2, the basic equations, including interfacial and wall friction factors, are discussed.
Linear stability of the interface is considered in Chapter 3, where the dispersion relation is
investigated. In Chapter 4, a steady traveling wave is obtained for small curvature and surface
tension dominant flows.
2. Basic equations

2.1. Application of shallow wave theory to both phases

As shown in Fig. 1, axisymmetric motion of the interface between two incompressible fluids in a
vertical circular tube is considered. Phase-1 is a liquid film along the tube wall, and phase-2 is the
gas flowing in the core. The radius of the tube is assumed to be R0. The conservation equations
that govern this system are the continuity equation and the Navier–Stokes equation for each
phase
r � uj ¼ 0; ð1Þ

qj
ouj
ot

�
þ uj � ruj

�
¼ �rpj þ qjg þ ljr2uj ð2Þ
where uj and pj are the velocity vector and pressure, and qj and lj are the corresponding densities
and dynamic viscosities of phase-j (j ¼ 1 is liquid, 2 is gas). The boundary conditions are the no
slip condition on the channel wall
u1 ¼ 0 on r ¼ R0 ð3Þ
as well as the following kinematic interface conditions at r ¼ R0 � h
uj ¼ � oh
ot

� wj
oh
oz

ð4Þ
Neglecting surface tension gradients along the interface, the continuity of normal and tangential
stresses at the interface implies
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Fig. 1. Axisymmetric coordinate system for a wavy interface.
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n � T1 � n ¼ n � T2 � nþ
r

oh
oz

� �2 þ 1
n o3=2

o2h
oz2

�
þ 1

R0 � h

�
; t � T1 � n ¼ t � T2 � n ð5Þ
where n is the unit normal pointing from the gas phase into the liquid phase, t is the unit tangent
vector to the interface, and Tj is the total stress tensor of phase-j.

The following nondimensional variables are introduced:
x
_ ¼ R0 � r

h1

z
_ ¼ z

k
t
_
¼ tw0

k
u
_ ¼ � k

h1

u
w0

w
_ ¼ w

w0

h
_

¼ h
h1

p
_ ¼ p

q1w
2
0

ð6Þ
as well as the following nondimensional parameters:
q ¼ q2

q1

l ¼ l2

l1

d ¼ h1

k
Fr ¼ w2

0

gk
We ¼ k2

h2
1

q1w
2
0h1

r
Re ¼ w0h1

m1

h1

k
ð7Þ
where w0 is reference liquid velocity, k is the scale of the wave in the z direction, and h1 is reference
liquid film thickness. If k is assumed to be much larger than the liquid film thickness, h1, then d
become much smaller than unity. In this study, w0 was assumed to be the average flow velocity of
the liquid film when the interface was flat.

If the cross-sectionally averaged void fraction, a, is introduced, the liquid film thickness, h, can
be written as
h
_

¼ ð1�
ffiffiffi
a

p
ÞR0

h1

ð8Þ
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Multiplying the nondimensional equations of mass and momentum conservation by 1� h1
R0
x
_
,

and integrating them with respect to x 	 R0 � r from 0 to h if j ¼ 1, and from h to R0 if j ¼ 2, and
taking the interface conditions, the nonslip condition on the channel wall, and the long wave
approximation, d 
 1, into consideration, we have (Appendix A)
o

o t
_ ð1� aÞ þ o

o z
_ ð1
n
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_
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where the averaged velocities W1 and W2 are defined by
W 1 ¼

R h
_

0
1� h1

R0
x
_


 �
w
_

1 dx
_

h
_

1� h1
2R0

h
_
 � ; W 2 ¼

R R0=h1

h
_ 1� h1

R0
x
_


 �
w
_

2 dx
_

R0

2h1
1� h1

R0
h
_
 �2

ð10Þ
and the following approximations, based on the assumption of quasi-steady flows, are used:
W 2
1 

R h
_

0
1� h1

R0
x
_


 �
w
_2

1 dx
_

h
_

1� h1
2R0

h
_
 � ; W 2

2 

R R0=h1

h
_ 1� h1

R0
x
_
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w
_2

2 dx
_

R0

2h1
1� h1

R0
h
_
 �2

ð11Þ
The velocity of phase-i in a long-wavelength flow is of the form
W i ¼ 0WiðrÞ þ d 1Wiðr; zÞ ð12Þ
Then the average velocity and the average momentum flux are given by
W
_

i ¼
1

hi

Z
phase-i

0WiðrÞrdr þOðdÞ

W
_ 2

i ¼
1

hi

Z
phase-i

½0WiðrÞ�2rdr þOðdÞ
ð13Þ
If the velocity profiles of w1 and w2 are assumed to be uniform, then Eq. (11) are rigorous. In the
case of a parabolic profile for laminar flow, Eq. (11) underestimate by 20%, and in the case of a
linear profile (i.e., Couette flow) in the liquid film (phase-1), they underestimate by 33%. In
contrast, for turbulent liquid films, Eqs. (11) and (13) are reasonable approximations. In any event
this assumption is widely used in the two-phase flow literature since the use of correlation coef-
ficients (Yadigaroglu and Lahey, 1976), which relate the average of the product of the velocities to
the product of the averages, is unreliable during transients (i.e., the velocity profiles change with
time).
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In Eq. (9), fw and fi are the friction factors at the wall and interface, respectively. The interfacial
area density, A000

i , may be expressed as a function of a as follows:
A000
i ¼ 2

R0

ffiffiffi
a

p
ð14Þ
The nondimensional equation for continuity of the normal stress becomes
p
_

1 ¼ p
_

2 �
1

We
R0

h1

1

4
a�ð3=2Þ oa

o z
_

� �2
("

� 1

2
a�ð1=2Þ o

2a

o z
_

2

)
o2h

_

o z
_2

þ h1

d2R0

a�ð1=2Þ

#
ð15Þ
Eqs. (9) are the basic system of equations for the incompressible two-fluid model, which shows
that interface motion is related to the dynamics of a one-dimensional two-fluid model in the long
wave approximation. It should be noted that Eqs. (9) can also be obtained by averaging each
phase (Drew and Passman, 1998), resulting in the so-called two-fluid model. Note also that there
is a pressure difference between the phases, as shown in Eq. (15), thus this model is a two-pressure
model.

2.2. Friction factor at the wall and interface

2.2.1. Relatively low gas velocity
First, let us consider the friction factor at the wall. It is convenient to assume a velocity dis-

tribution in the liquid film. If the gas velocity is assumed to be relatively low, the shear stress at the
wall is much larger than that at interface, so a no slip condition at the wall and a stress free
condition at the interface may be assumed. In this case, a parabolic velocity distribution may be
assumed, with zero velocity at wall surface and zero velocity gradient at the interface.

When the Reynolds number in the film region is defined by
Re1 ¼
2q1jW1jR0ð1� aÞ

l1

ð16Þ
where W1 is the dimensional form of W
_

1, the friction factor at the wall in laminar flow may be
assumed to be (Fukano et al., 1980)
fw ¼ 192ð1þ
ffiffiffi
a

p
Þ2

Re1ð3þ 5
ffiffiffi
a

p
Þ Laminar flow region; Re1

0@ <
192ð1þ

ffiffiffi
a

p
Þ2

0:3164ð3þ 5
ffiffiffi
a

p
Þ

 !4=3
1A ð17aÞ
For turbulent flow, Blasius’s correlation (Wallis, 1969) can be used
fw ¼ 0:3164Re�0:25
1 Turbulent flow region; Re1

0@ >
192ð1þ

ffiffiffi
a

p
Þ2

0:3164ð3þ 5
ffiffiffi
a

p
Þ

 !4=3
1A ð17bÞ
Next, we consider the friction factor at the interface. The Reynolds number of the gas phase in the
core region is defined by
Re2 ¼
2q2jW2 � gW1jR0

ffiffiffi
a

p

l2

ð18Þ
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where W2 is the dimensional form of W
_

2, and g is obtained from the velocity profile in the liquid
film. If the liquid film is laminar, then the velocity at the interface of the liquid film is 3/2 times
larger than the average velocity of the liquid film, since the velocity profile is parabolic. If the
liquid film is turbulent, and the velocity profile obeys the 1/7 law, then the velocity at the interface
of the liquid film is 60/49 times larger than average velocity of the liquid film. Hence, g is expressed
as follows:
g ¼ 3=2; when the liquid film is laminar

g ¼ 60=49; when the liquid film is turbulent
ð19Þ
When the gas phase is in laminar flow, the interface friction factor (Wallis, 1969) may be assumed
to be
fi ¼
64

Re2
ð1þ 75ð1� aÞÞ ð20aÞ
and when it is in turbulent flow, the interface friction factor (Wallis, 1969) may be assumed to be
fi ¼ 0:3164Re�0:25
2 ð1þ 75ð1� aÞÞ ð20bÞ
where in Eqs. (20), the term ð1þ 75ð1� aÞÞ is a friction factor multiplier induced by the wavy
interface (Wallis, 1969).

2.2.2. Relatively high gas velocity

Let us next consider the friction factor at the wall. If the gas velocity is assumed to be relatively
high, the shear stress at the wall is the same as that at the gas/liquid interface. This is equivalent to
assuming that the viscous shear in the film is
o

or
li

oWi

or
¼ o

or
li

o0Wi

or
þOðdÞ ¼ Oðd2Þ ð21Þ
so that the velocity profile is nearly linear (Couette flow). This allows us to use friction factors
developed for nonwavy flow. The friction factor at the wall in laminar flow is assumed to be
(Wallis, 1969):
fw ¼ 64

Re1
ðLaminar flow region; Re1 < 1187Þ ð22aÞ
while in turbulent flow, Blasius’s correlation can be used (Wallis, 1969)
fw ¼ 0:3164Re�0:25
1 ðTurbulent flow region; Re1 > 1187Þ ð22bÞ
Even if the gas velocity is very high, the gravity force can affect the flow distribution in the liquid
film. This effect can increase with increasing film thickness; consequently we need a more detailed
model to describe the interface.

Next, we consider the friction factor at the interface. The parameter g in Eq. (18) is:
g ¼ 2 ð23Þ

because of the assumed Couette flow distribution in the liquid film, which is independent of the
flow regime.
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When the gas velocity is high, the flow in the gas phase will be turbulent and the interface
friction factor is given by Eq. (20b).
3. Linear stability analysis of the interface

3.1. Derivation of the linear equations and dispersion relation

This section summarizes the derivation of the linear equations which describe the liquid film.
When the interface is disturbed from its steady-state, which is a liquid film with constant thick-
ness, the perturbed variables are defined as follows:
a ¼ a0 þ Da ð24Þ
and
W
_

1 ¼ W
_

10 þ DW1

W
_

2 ¼ W
_

20 þ DW2

p
_

1 ¼ p
_

10 þ Dp1

p
_

2 ¼ p
_

20 þ Dp2

ð25Þ
where, suffix 0 means the steady film flow at constant thickness.
Steady film flow at constant film thickness is described by
op
_

10

o z
_ ¼ �nw0 � nc10 �

1

Fr
¼ nc20 �

q
Fr

ð26Þ
where
nw ¼ 1

ð1� aÞ
k

4R0

fwjW
_

1jW
_

1

nc1 ¼
1

ð1� aÞ ð2R0A000
i Þ

k
16R0

qfijW
_

1 �W
_

2jðW
_

1 � W
_

2Þ

nc2 ¼
1

a
ð2R0A000

i Þ
k

16R0

qfijW
_

1 �W
_

2jðW
_

1 � W
_

2Þ

ð27Þ
The relation among W
_

10, W
_

20 and a0 can be obtained from Eqs. (26) and (27). The flow and
pressure drop depend on the friction factors assumed.

Next, the basic conservation equations, Eqs. (9), are linearized using Eqs. (24) and (25). From
Eq. (15), the linearized pressure jump condition is obtained.

The perturbed variables, DW1, DW2, Dp1, and Dp2, are eliminated, and the linearized partial
differential equation for Da is
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oDa

o t
_ þ V1

oDa

o z
_ þ T1

o

o t
_

�"
þ W

_
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o

o z
_

�2

Da þ qT2

o

o t
_

�
þ W

_

20

o

o z
_

�2

Da

þ C1

o2Da

o z
_2

þ C2

o4Da

o z
_4

#
¼ 0 ð28Þ
where
V1 ¼ ð1
h

� a0Þa0ðc1nw0 þ c3nc10 þ c6nc20Þ þ a0W
_

10c2nw0 þW
_

10c4nc10 � W
_

20c5nc20

i.
G

T1 ¼ a0=G; T2 ¼ ð1� a0Þ=G

C1 ¼
1

2We

ð1� a0Þð1�
ffiffiffiffiffi
a0

p Þffiffiffiffiffi
a0

p
d2

1

G
; C2 ¼

1

2We

ð1� a0Þ
ffiffiffiffiffi
a0

p

1� ffiffiffiffiffi
a0

p 1

G

G ¼ a0nw0c2 þ nc10c4 � nc20c5

c1 ¼
1

1� a0

þ 1

fw0

ofw0

oa0

; c2 ¼
2

W
_

10

þ 1

fw0

ofw0

oW
_

10

c3 ¼
1

1� a0

þ 1

A000
i0

dA000
i0

da0

þ 1

fi0

ofi0
oa0

; c4 ¼
2

W
_

10 �W
_

20

þ 1

fi0

ofi0

oW
_

10

c5 ¼
2

W
_

10 � W
_

20

þ 1

fi0

ofi0

oW
_

20

; c6 ¼ � 1

a0

þ 1

A000
i0

dA000
i0
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þ 1

fi0

ofi0
oa0

ð29Þ
When the first two terms in the bracket of Eq. (28) are rearranged, it can be rewritten as
oDa

o t
_ þ V1

oDa

o z
_ þ ðT1

"
þ qT2Þ

o

o t
_

�
þ cþ

o

o z
_

�
o

o t
_

�
þ c�

o

o z
_

�
Da þ C1

o2Da

o z
_2

þ C2

o4Da

o z
_4

#
¼ 0

ð30Þ

where
c� ¼
ðT1W

_

10 þ qT2W
_

20Þ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT1T2 W

_

10 � W
_

20


 �2
r

T1 þ qT2

ð31Þ
In Eq. (30), V1, c� and T þ qT2 are the dimensionless forms of the kinematic wave speed, the
characteristics and the relaxation time (Whitham, 1974).

The dispersion relation can be obtained by assuming a solution of the form:
Da ¼ Da0 exp½iðx t
_
� k z

_Þ� ð32Þ

Inserting Eq. (32) into Eq. (30), the following dispersion relationship can be obtained:
iðx � V1kÞ � ½ðT1 þ qT2Þðx � kcþÞðx � kc�Þ þ k2C1 � k4C2� ¼ 0 ð33Þ

Eq. (33) is a second-order equation for x, and thus we can easily obtain x as a function of k.
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Note that when W
_

10 is negative, nw0 and c2 are negative, and when W
_

10 is positive, nw0 and c2 are
positive. Since the sign of G in Eq. (29) is positive definite, T1, T2 C1 and C2 are also always
positive. The parameter C2, which multiplies the high-order derivative, involves surface tension
since it includes We. This implies that the term including C2 acts as a stabilizing effect for large
wave numbers.
3.2. Steady film flow calculation

In the following calculations, phase-1 was assumed to be water and phase-2 was assumed to be
air at atmospheric pressure and 20 �C. Tube diameter was assumed to be 0.026 m.
3.2.1. Relatively small gas velocity
Fig. 2 show the results for the case of relatively small gas velocity. Fig. 2(a) shows the relation

between velocities of both phases for several values of liquid film thickness. We see that the liquid
film velocity is always negative in Fig. 2(a). The absolute value of the liquid film velocity decreases
with increasing gas velocity, but only slightly. The absolute value of the liquid film velocity also
decreases with increasing void fraction, a0.

The friction loss at interface, nc10, is compared with the friction loss at wall, nw0, in Fig. 2(b).
The value of nc10=nw0, is less than about 0.3 when the gas velocity is less than about 5 m/s. When
we obtained the friction factor for laminar flow, we assumed a no slip condition at the wall as well
as a stress free condition at the interface, which means jnw0j � jnc10j. This relation is satisfied when
the liquid film velocity is sufficiently small.
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Fig. 2. The results of steady film flow calculation in the case of relatively small gas velocity: (a) the relation between the

phasic velocities; (b) the ratio of effective loss factor at interface to that at wall.
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The assumptions about both phase velocities are appropriate for slug flow. Thus, we may study
the interface between a Taylor bubble and the liquid film within this set of assumptions about the
phase velocities.
3.2.2. Relatively large gas velocity

Fig. 3 show the results for the case of relatively large gas velocity. Fig 3(a) shows the relation
between the velocities of both phases for several cases of film thickness. The ratio of friction loss
at the interface, nc10, to nw0 is shown in Fig. 3(b). The ratio jnc10=nw0j is much larger than unity
when the gas velocity is less than about 20 m/s. The ratio jnc10=nw0j is nearly unity when the gas
velocity is larger than about 20 m/s. Note that Couette flow was assumed in Section 2.2.2. When
jnc10j is comparable with jnw0j we find from the third equation of Eqs. (9) and (27), that the
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pressure gradient and gravity terms are small, and thus their effect on the velocity profile is also
small. This is consistent with the assumption of a Couette flow profile, hence the region where the
gas phase velocity is larger than 20 m/s is valid in Fig. 3.

The gas velocity at the flooding point, where the liquid velocity becomes zero in Fig. 3(a), is
around 12 m/s. This value agrees qualitatively with the gas velocity at the flooding point obtained
by Zabaras and Dukler (1986), which (see Fig. 4) was around 8� 12 m/s (the deviation increases
with decreasing void fraction), in spite of the fact that our assumed velocity profile is no longer
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valid at the flooding point. Zabaras and Dukler (1986) also showed that the Wallis’ friction factor
could underestimate flooding for increasing film thickness, which likely contributes to the devi-
ation of the flooding points at lower void fractions.
3.3. Dispersion relation

3.3.1. Relatively small gas velocity

Fig. 5 shows an example of typical dispersion relations. The result is compared with that of
some simplified cases such as q ! 0, nc10 ! 0, nc20 ! 0, and/or We ! 1. Fig. 5(a) show the real
part of x, (which is directly proportional to the wave’s celerity) and Fig. 5(b) show the imaginary
part of x, which is the negative of the wave’s growth rate parameter. In Fig. 5(a) and (b), the gas
velocity, W20, was 5 m/s. The wave is propagating downward if the real part of x is negative. If the
imaginary part of x is negative, the wave is growing while propagating, that is, the undisturbed
interface is unstable. Regarding the real part of x, the result of the full calculation and those of the
three simplified cases shown are similar to each other. The real part of x is negative and the
absolute value is larger than the wave number k, which means that the wave moves downward and
the absolute value of the wave speed is larger than that of the liquid film. For the imaginary part
of x, the complete calculation, Eq. (33), is well approximated by the simplification q ! 0, nc10,
and nc20 ! 0 when the gas velocity is less than 5 m/s because the symbol ‘‘o’’ and the solid line
become closer as the gas flow rate becomes small. The difference between both results increases
with increasing the gas velocity as shown in Fig. 5(c) where the gas velocity was 8 m/s. This means
that the gas phase does not affect the wave too much when the gas velocity is small. When
We ! 1 is assumed, the calculated results are good approximations to those of the complete
calculation for small k’s. However, for large k, the wave becomes unstable as We ! 1 while the
wave is stable in the complete calculation. This means that, as expected, surface tension causes
waves of large wave number to be damped.

For k a bit larger than 2p, the absolute value of the imaginary part of x becomes a maximum.
Since the length scale in the z direction is assumed to be the diameter of the tube, this means that
the wave length where the growth rate becomes a maximum is less than the tube diameter.
Moreover, since the long wave approximation is used for this formulation, if the gas flow affects
stability, this violates the long wave approximation. However, the gas flow does not affect the
stability of the interface in this case and only the flow in the liquid film is important, so that if
wave length is much larger than the liquid film thickness (not the tube diameter), the long wave
approximation is valid. As seen in Fig. 5(b), the wave number where the growth rate becomes
maximum satisfies this criterion.

From the considerations of Section 3.2.1, we note that the above-mentioned instability phe-
nomenon is related to the wavy structure of the interface between the Taylor bubble and the liquid
film near the trailing edge of a Taylor bubble.

In Fig. 5, it is evident that if surface tension is taken into consideration, the system of equations
is well-posed. If we omit the effect of surface tension, that is, We ! 1, the imaginary part of x
diverges into �1, which implies that the equation is ill-posed.

To explain the above mentioned matter more systematically, the various simplified dispersion
relations will now be derived.
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(i) k 
 1
We now derive the simplified dispersion relation for the small wave number approximation.

The nondimensional circular frequency, x, obtained from Eq. (33) is expanded in a power series
for k near 0, and the term of lowest order of k is shown. We have the following two approximate
solutions:
xr1 ¼ V1k; xi1 ¼ � T1ðV1

n
� W

_

10Þ2 þ qT2ðV1 �W
_

20Þ2 þ C1

o
k2 ð34aÞ
and
xr2 ¼
T1ð2W

_

10 � V1Þ þ qT2ð2W
_

20 � V1Þ
T1 þ qT2

k; xi2 ¼
1

T1 þ qT2

ð34bÞ
where
x ¼ xrj þ ixij j ¼ 1; 2 ð34cÞ

When the gas velocity is relatively small, the effective interface friction factors, nc10 and nc20, can

be assumed to be zero, and also the density ratio, q, can be neglected, so Eqs. (34) are further
simplified as follows:
xr1 ¼ W
_

10

�
þ c1

c2
ð1� a0Þ


k; xi1 ¼ �ð1� a0Þ2c2

1

nw0c32
k2 �

ð1� a0Þ 1� ffiffiffiffiffi
a0

p� �
2a0

ffiffiffiffiffi
a0

p
nw0c2d

2We
k2 ð35aÞ
and
xr2 ¼ W
_

10

�
� c1

c2
ð1� a0Þ


k; xi2 ¼ nw0c2 ð35bÞ
As mentioned before, since the sign of G in Eq. (29) is positive definite, T1 and T2 are also always
positive. Then the flat interface case, Eq. (34a) or (35a), is always unstable. In this case the wave
velocity is V1, which is the kinematic wave speed. Eq. (34a) shows that the wave is unstable be-
cause of the inertia forces of both phases. In contrast, the solution of Eq. (34b) or (35b) is always
stable.
(ii) k � 1

We next derive the characteristics for the large wave number region. The nondimen-
sional circular frequency x obtained from Eq. (33) is expanded in a power series for 1=k
around 0, and the term of lowest order of 1=k is shown. We have the following two approximate
solutions:
xr1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2

T1 þ qT2

s
k2; xi1;2 ¼

1

T1 þ qT2

ð36Þ
If the effective interface friction factors, nc10 and nc20, are assumed to be zero, and the density ratio,
q, is neglected, which is accurate for low gas flow rates, Eq. (36) is simplified as follows:
xr1;2 ¼ �k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2We
ð1� a0Þ

1� ffiffiffiffiffi
a0

p� � ffiffiffiffiffi
a0

p

s
; xi1;2 ¼ nw0c2 ð37Þ
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The sign of xi1;2 is always positive because the sign of T1 and T2 is positive, and the sign of nw0 is
same as that of c2. This means that the flat interface is stable in this case, which means the
equation is well-posed.
3.3.2. Relatively large gas velocity

Fig. 6 shows an example of the dispersion relations for relatively large gas velocities. The result
is also compared with those of some simplified cases; that is, q ! 0, nc10 ! 0, nc20 ! 0, nw0 ! 0,
and/or We ! 1. Fig. 6(a) is the real part of x and Fig. 6(b) is the imaginary part of x. The real
part of x is slightly larger than the wave number k, and the velocity of wave is slightly larger than
the liquid velocity. In regard to the imaginary part of x, the result of Eq. (33) is well approximated
by the result of the simplification q ! 0, nc10 ! 0, nc20 ! 0 only in a very small wave number
region, while it approaches the result of simplification nc10, nc20, nw0 ! 0 (but not q ! 0) for
relatively large wave numbers. This means that kinematic waves appear only for very small wave
numbers, and if the wave number is increased a little, the wave is dominated by the inertia of both
phases (i.e., a dynamic wave). In this case, the wave generation mechanism is like a Kelvin–
Helmholtz instability.

From considerations in Section 3.2.2, the above mentioned instability phenomenon is related to
the wavy structure of annular flow, that is, the wavy structure is produced by the interaction of the
inertia of both phases, and is similar to a Kelvin–Helmholtz instability.

When the absolute value of the imaginary part of x becomes a maximum, k is above
2p, which means that the wave length where the growth rate becomes maximum is less
than the tube diameter. In this case, the gas flow affects stability, and the long wave approx-
imation is not valid for the gas phase at the wave length where the growth rate becomes maxi-
mum.
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4. Steady traveling waves

The shape of steady traveling waves (i.e., solitons) is considered in this section. The velocity of a
traveling wave is assumed to be c. A coordinate transformation is performed from stationary
coordinates ð t

_
; z
_Þ to coordinates ðs; fÞ, which move with traveling wave. The basic conservation

equations, Eq. (9), are expressed in moving coordinates as follows:
d

df
fðW

_

1 � cÞð1� aÞg ¼ 0;
d

df
ððW

_

2 � cÞaÞ ¼ 0

ðW
_

1 � cÞdW
_

1

df
¼ � op

_

1

of

 
þ 1

Fr

!
� nw � nc1

qðW
_

2 � cÞ dW
_

2
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1
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þ q
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þ nc2 �
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("
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� �3
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4
a�ð3=2Þ oa

of

� �
o2a

of2

� �
� 1

2
a�ð1=2Þ o

3a

of3

)
� h1

2d2R0

a�ð3=2Þ oa
of

#
ð38Þ
where s derivatives are set to zero by assuming a steady traveling solitary wave.

4.1. Small curvature

When curvature of the interface is small, the surface tension term is small because We � 1,
consequently the term due to surface tension in the fourth equation of Eq. (38) may be omitted.

The first and second equations of Eq. (38) are integrated with respect to f, yielding
ðW
_

1 � cÞð1� aÞ ¼ const: ¼ W
_

11



� c
�
ð1� a1Þ; ðW

_

2 � cÞa ¼ const: ¼ ðW
_

21 � cÞa1

ð39Þ

where the suffix 1 expresses the conditions of the flow to which the traveling wave is assumed to
converge at f ! 1.

We can eliminate a from Eq. (39) and differentiate the result with respect to f. The relation
between dW

_

2=df and dW
_

1=df can be obtained as
dW
_

2

df
¼ �ðW

_

11 � cÞðW
_

21 � cÞa1ð1� a1Þ

1� ðW
_

11�cÞð1�a1Þ
W
_

1�c

� 2

ðW
_

1 � cÞ2
dW

_

1

df
ð40Þ
Substituting Eq. (40) into the fourth equation of Eq. (38), eliminating p
_

1 from the result, and the
third equation of Eq. (38), we have
df

dW
_

1

¼ �

W
_

1ðfÞ � cþ qðW
_

11�cÞðW
_

21�cÞ2a21ð1�a1Þ

1�ðW
_

11�cÞð1�a1Þ

W
_

1ðfÞ�c

� 3

ðW
_

1ðfÞ�cÞ2

nw þ nc1 þ nc2 þ 1�q
Fr

ð41aÞ
Consequently, the traveling wave problem has been reduced to a quadrature.
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For small gas flow, q ! 0, nc1, and nc2 ! 0 are valid, and Eq. (41a) reduces to
df

dW
_

1

¼ �W
_

1ðfÞ � c
nw þ 1

Fr

ð41bÞ
Eq. (41a) or (41b) can be integrated with respect to W
_

1 numerically, and if the parameters a1,
W
_

11 and W
_

21 are given, we can obtain the relation between f and W
_

1. If W
_

1 is obtained as a
function of f; a can be obtained as follows:
aðfÞ ¼ 1�
W
_

11 � c

 �

ð1� a1Þ

W
_

1ðfÞ � c
ð42Þ
Also, from a, we can obtain h
_

from Eq. (8).
The liquid pressure, p

_

1, can be obtained by substituting Eq. (41) into the third equation of Eq.
(38) and integrating the result with respect to f as follows:
p
_

1ðfÞ ¼ p
_

1ð0Þ �
1

2
W
_

1ðfÞ2
��

� cW
_

1ðfÞ
�
� 1

2
W
_

1ð0Þ2
�

� cW
_

1ð0Þ
��

� f
Fr

�
Z f

0

ðnw þ nc1Þdf

ð43Þ

If the wave celerity, c, is assumed to be the velocity of the Taylor bubble, which is equal to the
velocity of the gas, the shape of the traveling wave is expected to become the Taylor bubble shape,
excluding the tip and trailing edge. It is well known that the speed of the Taylor bubble is
determined by the shape of the tip (Wallis, 1969), which is essentially spherical. The empirical
Taylor bubble velocity is expressed as follows:
c ¼ W
_

20 ¼ 1:2 ð1
h

� aÞW
_

10 þ aW
_

20

i
þ 0:35

ffiffiffiffiffiffi
gD

p
=w0 ð44Þ
The basis of Eq. (44) is potential flow theory applied to the tip region of a Taylor bubble.
The interface force density is given by
M ¼ 1

L
_ p

_

þnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dfþðx

_Þ
dx
_

 !2
vuut0B@ � p

_

�n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ df�ðx

_Þ
dx
_

 !2
vuut 1CA ð45Þ
where n is normal vector of the interface, suffix+expresses interface of the Taylor bubble except at
the tip and the trailing edge, suffix-expresses the trailing edge, and bL is the nondimensional dis-
tance between the adjoining Taylor bubbles.

Fig. 7 shows the results of the traveling wave shape when Eq. (44) is assumed, where wll is the
liquid velocity in the region in front and behind the Taylor bubble; that is, it is the liquid slug
velocity. In this figure, data for the Taylor bubble shape taken from the experiments of Fukano
et al. (1980) are compared with the analytical results. The analytical results agree well with these
experimental results.

The distribution of film thickness, the liquid velocity, and the pressure are shown in Fig. 8.
Pressure increases with decreasing f. Fig. 9 shows the interfacial force density on the Taylor



Fig. 7. Traveling wave shape and Taylor bubble shape.
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Fig. 9. The interfacial force density on a Taylor bubble: (a) z
_

direction and (b) x
_

direction.
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bubble, where the shape of the trailing edge of the bubble is assumed to be flat and perpendicular
to the z-axis. In this case, the pressure at the trailing edge can be assumed to be the same as the
pressure just before the expansion from an empirical correlation at the suddenly expanded
channel, or from a wake model applied to the region. Fig. 9(a) shows the interfacial force density
in the z

_
-direction, Mz, and Fig. 9(b) shows it in the lateral x

_
-direction, Mx. The value of Mz in-

creases with increasing x
_

when x
_

is less than about 2.5. It converges to a certain value when Wll is
0.4, 0.6, and 1.0 m/s, and it decreases with increasing x

_
, when x

_
is larger than about 2.5 and Wll is

1.0 m/s. The value of Mx is large when x
_

is near to unity, and it converges to zero when the film
thickness becomes large.
4.2. Surface tension dominant flows

Now, we consider a wavy interface of short wave length, when the Weber number, We, is much
larger than unity. Then the length scale is 1=We/ where / is a scaling exponent. That is
y ¼ We/f ð46Þ
Eliminating p
_

1 from the third and fourth equations of Eq. (38) results in:
W
_

1



� c
� dW

_
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dy
� q W

_
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Fr
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dy3

24 þ h2
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dh
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1� h1
R0
h
_

35 ð47Þ
If the term due to surface tension, We2/�1 d3 h
_

dy3 , in Eq. (47) is assumed to balance the inertia, then
/ ¼ 1=2, and Eq. (47) can be rewritten as
W
_

1
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� dW

_
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dy
� q W

_
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� dW

_
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_
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ð48Þ
Eq. (48) can be easily integrated with respect to y
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� cW

_

1

�
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�
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�
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ð49Þ
where L1 is an integral coefficient. Using first and second equations of Eq. (38), we can eliminate

W
_

1 and W
_

2, and a is replaced by h
_

using Eq. (8), resulting in the following ordinary differential
equation for liquid film thickness, h

_
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If we define Gðh
_

Þ ¼ dh
_

=dy, then Eq. (50) becomes
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dG h
_
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dh
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2

d

dh
_ G h

_
 �2
� �

ð51Þ
Substituting Eq. (51) into Eq. (50), and integrating the result with respect to h
_

, then we have
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If h
_

¼ h
_

1 ¼ 1 and dh
_

=dy ¼ 0 are assumed at y ¼ 0, L2 can be evaluated, and Eq. (52) becomes
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where L1 is given by
L1 ¼ L0
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Eq. (54b) can be integrated numerically with respect to h
_

. An example is shown in Fig. 10. The
value of c is assumed to be the Taylor bubble velocity, as given in Eq. (44), and also c is assumed
to be between the velocities of both phases. The solution has the appearance of a soliton. The
parameter L0

1 relates to the curvature at h
_

¼ h
_

1, and if L0
1 becomes large, the peak value in Fig. 10

also becomes large. Indeed, it can be larger than the radius of the tube; however, the long wave
approximation is assumed in this analysis, and such a steep wave shape is beyond the region of
validity of this analysis. The steepness of the wave shape increases with decreasing c, and this
result may be related to the formation and propagation of ripple waves on a Taylor bubble.



Fig. 10. Traveling wave shape when surface tension is dominant in the case where a1 ¼ 0:88, W11 ¼ �1:23 m/s, and

W21 ¼ 0:0 m/s.
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5. Conclusions

A long wave model for the evolution of the interface between a liquid film on a vertical pipe and
gas flow in the core was derived, and the results for stability of a flat interface and traveling waves
were considered.

(1) When long wave theory was applied to both phases, the two-fluid model conservation equa-
tions are derived from this deterministic procedure without requiring averaging.

(2) For low gas flow rates, where Taylor bubbles could be generated, the inertia force on the gas
phase and the interface friction hardly affected the wavy interface, and the interface wave is
dominated by a kinematic wave, which is analogous to void waves in two-phase flow. The
kinematic wave is stabilized by surface tension for short wave lengths, while the wave is desta-
bilized by the inertia of the liquid film. Long wave theory is valid at wave lengths where the
growth rate became a maximum. Moreover, the wave could be generated on the interface be-
tween the Taylor bubble and the liquid film.

(3) For large gas flow rates, where the flow regime is expected to be annular flow, the effect of the
gas inertia force became large, and the instability mode was similar to a Kelvin–Helmholtz
instability. However, long wave theory is not valid for the gas phase at the wave length where
the growth rate becomes a maximum.

(4) For low gas flow rates, when surface tension hardly affects the wavy interface, the shape of
a traveling wave is similar to that of a Taylor bubble except near the tip and trailing edge.
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Interestingly, the shape of a traveling wave of steep slope, where surface tension was domi-
nant, was that of a soliton.
Appendix A. Derivation of Eqs. (9)

When the nondimensional variables and parameters are defined as in Eqs. (6) and (7), the
nondimensional equations of mass and momentum conservation may be derived from Eqs. (1)
and (2) as
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The nondimensional no-slip condition on the channel wall is
u
_

1 ¼ w
_

1 ¼ 0; on; x
_ ¼ 0 ðA:3Þ
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the nondimensional interface condition is
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The long wave approximation assumes d 
 1. Thus, Eqs. (A.2.1) and (A.2.3) become
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Multiplying Eqs. (A.1 and A.2) by 1� h1
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_
, and integrating them with respect to x from 0 to h for

j ¼ 1, and from h to R0=h1 for j ¼ 2, and taking Eqs. (5), (A.3), (A.4) and (A.7) into consider-
ation, we have
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where the shear stresses at the wall, s1 (x ¼ 0), and at the interface, s2 (x ¼ h), are expressed as
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In Eqs. (A.9), fw and fi are the friction factors at the wall and interface, respectively.
If the averaged void fraction in the cross sectional area, a, is introduced, the liquid film

thickness, h, can be replaced as in Eq. (8). When the averaged velocities, W1 and W2, defined by Eq.
(10), and the approximations of Eq. (11), which include a quasi-steady approximation, are used,
then Eqs. (A.8) can be rewritten as Eqs. (9).
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